
LOW-RANK DECOMPOSITION OF MULTI-WAY ARRAYS:
A SIGNAL PROCESSING PERSPECTIVE

N. D. Sidiropoulos

Dept. of ECE, Tech. Univ. of Crete,
73100 Chania - Crete, Greece

&
Dept. of ECE, Univ. of Minnesota - Minneapolis, U.S.A.

nikos@telecom.tuc.gr

ABSTRACT

In many signal processing applications of linear algebra tools, the
signal part of a postulated model lies in a so-called signal sub-
space, while the parameters of interest are in one-to-one corre-
spondence with a certain basis of this subspace. The signal sub-
space can often be reliably estimated from measured data, but the
particular basis of interest cannot be identified without additional
problem-specific structure. This is a manifestation of rotational in-
determinacy, i.e., non-uniqueness of low-rank matrix decomposi-
tion. The situation is very different for three- or higher-way arrays,
i.e., arrays indexed by three or more independent variables, for
which low-rank decomposition is unique under mild conditions.
This has fundamental implications for DSP problems which deal
with such data. This paper provides a brief tour of the basic ele-
ments of this theory, along with many examples of application in
problems of current interest in the signal processing community.

Keywords: Three-way analysis, low-rank decomposition, par-
allel factor analysis (PARAFAC), canonical decomposition (CAN-
DECOMP)

1. INTRODUCTION

Three-way and higher-way data (that is, arrays indexed by three
or more independent variables) abound in modern applications of
signal processing. Here are some examples:

� A video signal.

� Blind multiuser detection-estimation in Direct-Sequence Code-
Division Multiple-Access (DS-CDMA) communication, us-
ing a receive antenna array [42, 41, 36]. Here, the dimen-
sions of the array will be (number of - #) chips per symbol
�� symbols �� antennas.

� Multiple-invariance sensor array processing (MI-SAP) [40]:
� displaced subarrays �� subarray elements �� tempo-
ral snapshots.

� Joint detection-estimation for OFDM systems subject to CFO,
using receive diversity [19]: � tones �� symbols �� re-
ceive diversity branches.
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� Blind decoding of a class of linear space-time codes [39].

� 3-D Radar clutter modeling and mitigation [25]: � range
gates �� Doppler bins �� spatial or beamspace sectors.

� Exploratory data analysis (e.g., [2, 3, 5]): clustering, scatter
plots, multi-dimensional scaling [8, 24], ... with applica-
tions to chromatography, spectroscopy, and magnetic reso-
nance. These applications parallel classical applications of
principal component analysis, but with the added benefit of
naturally fixed axes.

In addition to the above applications, some of which may sound
exotic, there are more bread-and-butter signal processing appli-
cations of multi-way analysis. Multi-dimensional harmonic re-
trieval and joint diagonalization problems can be viewed as struc-
tured higher-way analysis problems [34, 20, 27, 29, 28, 38]. Blind
spatial signature estimation from covariance matrices, using time-
varying power loading [31], spectral color, or multiple covariance
lags, can also be cast in the multi-way analysis framework. The
latter class of problems includes, e.g., blind source separation for
multi-channel speech signals. Certain higher-order statistics based
parameter estimation and signal separation problems also fall un-
der multi-way analysis [10, 11, 12].

At this point, it should be clear that our subject matter is not
only about fascinating mathematics. However, it does not hurt that
the underlying theory is genuinely interesting, exhibiting many
surprising twists, as we will see. This has kept me going over
the years, and I hope it will also get you interested.

While signal processing researchers often work with three-
way data sets, they usually convert them to more familiar matrix
representations prior to any processing - as in working with spe-
cific video frames, or “unfolding” the higher-dimensional struc-
ture by stacking frames into a tall matrix. Subsequent processing
usually ignores the underlying algebraic structure of the original
higher-way array, which is often crucial for proper interpretation
of the measured data. This practice is mostly due to the fact that al-
gebraic analysis of higher-way arrays is quite different from matrix
algebra, and largely unknown to the signal processing community.
The purpose of this paper is to shed light in this direction.

We will note several similarities and differences between three-
way arrays and ordinary matrices (two-way arrays). In particular,
we will focus on the concept of rank, and how it naturally gener-
alizes to three- and higher-way arrays. Mastering three-way no-
tation is very important for getting into the subject matter, and it



usually is the stumbling block that dissuades newcomers. For this
reason, we will carefully develop the associated notation, making
extensive use of the Khatri-Rao (column-wise Kronecker) prod-
uct, which enables compact matrix representation of three- and
higher-way data. Symmetry will also play a key role; look out for
symmetries in the various equivalent representations of the data.
After these preliminaries, we will take a closer look at data model-
ing aspects of various applications. Uniqueness (i.e., model iden-
tifiability) is central to three-way analysis; accordingly, much of
our exposition will be devoted to it. We will not lose sight of al-
gorithms though, and performance analysis will also be touched
upon. Essential web pointers and a judiciously compiled bibliog-
raphy will be provided at the end of the paper. While far from
being comprehensive, these references do provide a good roadmap
for further study. We will wrap things up with a discussion of open
issues and some problems for further research.

2. THREE-WAY ARRAYS

Consider a matrix (that is, two-way array) � �� ����� � � �� � ��.
A three-way array will be denoted by �������� � �� � � ���.

2.1. Three-Way Versus Two-Way Arrays

A rank-one matrix is generated as the outer product of two vectors,
and it contains all double products of elements drawn from the
respective vectors. The rank of a matrix can then be defined as
the smallest number of rank-one matrices that is needed for exact
additive decomposition of the given matrix. This concept naturally
generalizes to three-way arrays [22, 23]: The rank of a three-way
array is the smallest number of rank-one three-way arrays needed
for its decomposition. The only extension here is that a rank-one
three-way array is the outer product of three vectors, containing all
triple products.

So far so good, but this is essentially where the similarity ends.
Whereas for two-way �� � �� arrays it holds that the row-rank (�
linearly independent rows) = column-rank (� linearly indepen-
dent columns) = rank � ��	��� ��, for three-way arrays the row-
rank (� linearly independent “fibers” along the row dimension) ��
column-rank �� “tube”-rank �� rank. Furthermore, if we draw a
random Gaussian matrix in Matlab, then rank(randn(I,J))=min(I,J)
with probability (w.p.) 1; whereas for a random Gaussian 
�
�

three-way array, rank(randn(2,2,2)) is a random variable (2 w.p.
0.3, 3 w.p. 0.7) [23]. Thus, while maximal rank and typical
rank coincide for matrices, this is not the case for three-way ar-
rays ([23]; see also [44, 30, 49]). The rank of a real matrix re-
mains the same if we decompose it over the complex field; not
so for real three-way arrays, whose decomposition is sensitive to
whether or not the underlying field is open or closed (� versus � )
[22]. Furthermore, except for loose bounds and special cases (e.g.,
[23, 44]), general results for maximal rank and typical rank are
sorely missing for decomposition over �, although the theory is
more developed for decomposition over � [7].

2.2. Khatri-Rao Product

The Khatri-Rao product [21] of two matrices � (� � � ) and �
(� � � ) is defined as

��� �� ��� � �� � � � �� � �� � �

where � stands for the Kronecker product [1]. The Khatri-Rao
product has the following useful properties [1]:

�������� � � ����������

where � is a diagonal matrix and ���� is a column vector con-
taining the diagonal of�. Furthermore,

�� ����� � �������

2.3. Decomposition of Three- and Higher-Way Arrays

In scalar form, a rank-� three way array can be written as a sum
of triple products

������ �

��
���

	��� 
��� ���� �

� � �� � � � � �� � � �� � � � � ��  � �� � � � � �

which can also be expressed in so-called slab form

�� � ��������
�  � �� � � � � �

where � �� �	��� � (� � � ), � �� �
��� � (� � � ), � �� ����� �
(� �� ), and����� is a diagonal matrix holding the -th row of
� along its diagonal. We can combine all the above equations for
 � �� � � � � � in a single tall matrix equation

�
����	� � �������

and further recast the latter in vector form, using the vectorization
property of the Khatri-Rao product

�
���	� �� ���

�
�

����	�
�
� ��� ������	��� �

�������	���

The model in either one of the above representations is variably
known as Parallel Factor Analysis (PARAFAC) [13, 14, 15], Canon-
ical Decomposition (CANDECOMP) [8], and triple-product (or,
trilinear) decomposition [22, 23]. We will use the shorthand � �
������� to denote the three-way array generated by any of the
above equations for given �����.

Jos ten Berge proposed the compact acronym CP (Candecomp
- Parafac), which we will also adopt for brevity. If � is smaller
than the maximal possible rank, then it also makes sense to think
of CP as low-rank decomposition. In applications, the CP model
is usually fitted to noisy measured data, and � is generally much
lower than what is needed for exact decomposition of the mea-
sured data array. This corresponds to low-rank approximation of
the measured data array.

CP was independently introduced by Harshman [13, 14, 15]
and Carroll & Chang [8], inspired by early exploratory work by
Cattell [9] (see also Schonemann [33]).

For �� � ��-way arrays, the situation is similar: we have the
scalar sum of N-fold products equation
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the matrix equation
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and the vector equation
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2.4. What is the Physical Meaning of Multi-Way Array Rank?

The meaning of �� ���� � � � is easy to see in the context of any
particular application - � is the sample length along one measure-
ment dimension, � is the sample length along another, and so on.
However, the physical meaning of array rank may not be as clear.
For this, we will need to take a closer look at some applications.

Consider, for example, the problem of blind multiuser detection-
separation in the context of a synchronous DS-CDMA system with
symbol-periodic spreading. Let ��� �� � �� stand for (receive an-
tenna, symbol snapshot, chip, user). Then the discrete-time baseband-
equivalent chip-rate samples can be arranged in a three-way struc-
ture [42]

������ �
��
���

	���
��� ���� �

� � �� � � � � �� � � �� � � � � ��  � �� � � � � �

where � is the number of receive antennas, � is the number of
symbols, � is the number of chips per symbol (spreading gain),
and � is the number of users in the system. Here, 	��� is the re-
sponse of antenna � to user � , 
��� is the �-th symbol emmitted by
user � , and ���� is the -th chip of the spreading code of user � .
We see that � corresponds to the number of users in the system,
while � � � � � corresponds to the total number of measure-
ments. Also note that, the rank of the three-way array generated
as
��

��� 	��� 
��� ���� is generally � � ; in order to be equal to � ,
we need certain uniqueness conditions, to be discussed later.

In the context of MI-SAP, the slab notation is better suited to
explain the link between low-rank three-way decomposition and
the MI-SAP baseband-equivalent model. Let � be the response
of the reference subarray, �� the temporal signal matrix (usually
denoted 
), and let ����� hold the phase shifts for the -th dis-
placed but otherwise identical subarray. Then [40]

�� � ��������
�  � �� � � � � �

Clearly then, � stands for the number of narrowband sources.
Note that rank can be augmented in the presence of incoherent
multipath, up to the total number of signal paths.

Let us now turn to a Single-Input Multiple-Output (SIMO) Or-
thogonal Frequency-Division Multiplexing (OFDM) data model.
At the transmitter, � symbols are first linearly combined using an
inverse � �� FFT matrix �� , and then a Cyclic Prefix (CP) of
length � is added before transmission. Thus the signal

��� � ���
�

� ��

is serially transmitted through a multipath channel of order � �.
At receive antenna element �, � � �� � � � � � � 
, after suitable
processing (using that circular matrices are diagonalized by the
FFT):

���� � ��
�
��

� ������������
����
� ����

where �� is � �� diagonal, containing the channel’s frequency
response, and

� ��

�
��

� � � � �
... ��������

...
� � � � ���
����

�
	
 � �


�


models the Carrier Frequency Offset (CFO). Collecting � such
snapshots, we write

�� � ��
�
����
�

� �� �� ����
� ��� � � �� � � � � �

This is a CP decomposition of order � (the number of tones), with
extra structure on the factor matrices [19].

3. UNIQUENESS

It is easy to see from the scalar view of the CP model that a per-
mutation of the � rank-one terms will not affect the data. Further-
more, it clear that it is possible to scale, e.g., the first column of�,
and, independently, the first column of �, and, so long as the first
column of� is counter-scaled, this will have no effect on the data.
From this, it is clear that the CP model entails an inherent column
permutation ambiguity that is common to all three component ma-
trices, �, �, �, and column scaling / counter-scaling ambiguity
on each triple of corresponding columns. The key question then
is under which conditions, if any, these trivial ambiguities are the
only model ambiguities? This is the subject of CP uniqueness, i.e.,
CP model identifiability.

The systematic study of CP uniqueness goes back to the 70’s.
The first results are due to Jennrich and Harshman [13, 14]). The
most general sufficient condition for essential uniqueness is due to
Kruskal [22]. In his seminal paper [22], Kruskal showed that for
� � � and decomposition over �, if �  �  � � 
�  
,
where � is the k-rank of � = maximum � such that every �
columns of � are linearly independent, then CP decomposition
is unique, except for the trivial permutation and scaling ambiguity.
Sidiropoulos et al, further qualified Kruskal’s condition for decom-
position over � [42]. Sidiropoulos & Bro [35] further generalized
the condition to any � .

Kruskal built his original proof on the following cornerstone
result:
� Kruskal’s Permutation Lemma [22]: Consider� (��� ) hav-
ing no zero column, and �� (� � �� ). Let ���� be the weight (# of
nonzero elements) of its argument, and �� stand for the rank of
matrix�. If for any vector � such that

���� ��� � � 	 � ��  ��

we have
������ � ���� ����

then � � �� ; if also � � �� , then � � �� , and there exist a
permutation matrix� and a non-singular diagonal matrix� such
that� � ����.

It is easy to demonstrate an elementary version of the result,
for a pair of square nonsingular matrices (using the rows of the
pseudo-inverse). The interesting case, however, is for fat matri-
ces, for which the result is deep and difficult to show. On this,
see a recent clear-cut proof in [18], based solely on induction and
contradiction (but still lengthy).

Instead of asking for faith in the permutation Lemma, we shall
take a different, perhaps more pedagogical route. We start with



a very simple (albeit also very restricted) proof of uniqueness,
that parallels the original arguments of Harshman and Jennrich
[13, 14, 33], and is based solely on eigenvalue and singular value
decomposition (EVD, SVD, respectively). Then, we will present
another proof that is closer in both claim and spirit to Kruskal’s
proof - thus allowing the reader to develop an appreciation of the
mathematical underpinnings of the area.

Consider the 2-slab model, with square/tall and full column
rank ��� � � � and ��� � � �, and distinct elements along the
diagonal of�:

�� � ��� �

�� � ���� �

Introduce the compact � -component SVD of
�
��

��

�
�

�
�

��

�
�
� � ����

�	���� � � implies that span��� � span�

�
�

��

�
�; hence

there exists a nonsingular matrix � such that

� �

�
��

��

�
�

�
�

��

�
��

Next, construct the auto- and cross-product matrices

�� � ��
� �� � ������ �� ���

�� � ��
� �� � ������� � ����

and note that the matrices on the right hand side are square and
full-rank. Solving the first equation and substituting to the second,
yields the eigenvalue problem


�
��
� ��

�
�
�� � ����

From which the sought matrices can be recovered, up to a
common column permutation, and column scaling / counter-scaling,
which carry over from the solution of the eigenvalue problem.

As mentioned earlier, the proof of Kruskal’s result relies on
his Permutation Lemma (in its general form), and is beyond our
scope. The following is more palatable:
Theorem: Given � � �������, with� � � � � ,� � � � � ,
and � � � � � , it is necessary for uniqueness of �, �, �
that ��	������ ����� ����� � � . If � � �, then it is also
necessary that ��	��� �� �� � 
.
If, in addition �� � � , and �  � � �  
, then �, �, and
� are unique up to permutation and scaling of columns, meaning
that if � � � ��� ��� ���, for some �� � � � � , �� � � � � , and
�� � ��� , then there exists a permutation matrix� and diagonal
scaling matrices �������� such that

�� � ����� �� � ����� �� � ����� ������ � ��

Proof: Necessary conditions [26] follow from

�
��	��� � �������

�
�	���� � �������

�
����	� �� �������

If any of the three Khatri-Rao products fails to be full col-
umn rank, then adding a null vector to any of the rows of the
corresponding third matrix does not affect the data. Necessity of

��	��� �� �� � 
 can be proven by explicit rotation of the
corresponding factors.

Sufficiency will be proven by contradiction. Without loss of
generality, we may assume that� is square nonsingular, and ���� �
�

We will use the elementary version of the Permutation Lemma:
For square nonsingular �, ��, if

������ � �� 
� � ���� ��� � �

then �� � ���
Suppose � � ������� � � ��� ��� ���; then

������� � ���	��� �

��� ��

�
���

Since ���� � �� � � , it follows that � ����� � � �� � �

Taking linear combinations of the slabs along the third mode,
we obtain

��
���

���� � ���	�������� � ����	���� ��� ���
�

for all � �� ���� � � � � �� �
� � �

� .
The rank of a matrix product is always less than or equal to the

rank of any factor, and thus

���� ��� � �������� ��� � � ��������� ��� ��� � �������������

Assume ���� ��� � �; then ������������� � �, and we
wish to show that ������ � �.

Let us use the shorthand � �� ������. Using Sylvester’s
inequality and the definition of k-rank:

������������� � ��	��� ��  ��	��� ��	 ��

Hence
��	��� ��  ��	��� ��	� � �

Consider cases:

1. Case of� � ��	��� �� � then� � �, and hence� � �,
because � is nonsingular and � is nonzero;

2. Case of ��	��� �� � � � ������ �� � then
��	��� �� � �, which contradicts our hypothesis; and

3. Case of � � ������ �� � then � � �  � 	 �: yet
another contradiction under our hypothesis, as it requires
that � � �  � (max possible � � ������ is � )

We conclude that ���� ��� � � implies ������ � �. Thus
�� � ���, and the rest follows easily; we’re home.

An important question is whether or not Kruskal’s sufficient
condition is also necessary for uniqueness. A long-held affirma-
tive conjecture by Kruskal [23] was recently refuted by ten Berge
and Sidiropoulos [48], who showed that his condition is indeed
necessary for uniqueness for � � �
� �, but not for � � �. Jiang
& Sidiropoulos [18] subsequently provided further insights on this
issue, and have shown that, for �� � � , the following condition
is necessary and sufficient for CP uniqueness:

No linear combination of two or more columns
of��� can be written as a tensor (Kronecker,
Khatri-Rao) product of two vectors



3.1. Significance

We have seen that CP decomposition is essentially unique (i.e., ex-
cept for the inherent permutation and scaling ambiguity), provided
rank is “low enough”. This often works for rank much greater than
1, in contrast to low-rank decomposition of matrices, which is only
unique, up to scaling, when the rank is equal to 1. This sounds fas-
cinating, but what is its significance in terms of signal processing
applications?

This can be appreciated by going back to some of our applica-
tion examples. In particular:

� In the CDMA application, fully blind multiuser separation
is possible from the multiple-sensor mixture data [42];

� In the MI-SAP application, blind identification of all source
signals and associated parameters is possible [40];

� In the OFDM application, it is possible to recover the trans-
mitted symbols, up to a common scale factor, despite the
presence of the unknown frequency offset, which can also
be estimated along with other pertinent signal parameters
[19].

� More generally, if the number of users (sources, transmit-
ters) is not too big, completely blind identification is possi-
ble, and the resulting identifiability conditions are the best
available to date for the respective problems.

4. ALGORITHMS

Many algorithms have been developed for fitting the CP model.
The SVD/EVD approach used in the first constructive proof of
uniqueness in this paper, is perhaps the simplest way to “fit” cer-
tain restricted CP models. Being similar to the well-known ES-
PRIT algorithm in array processing, this algebraic procedure works
reasonably well in the high-SNR regime, but can be quite subopti-
mal even at moderate SNR.

The workhorse CP fitting algorithm is Trilinear Alternating
Least Squares (TALS), and it goes back to Harshman [13, 14, 15].
TALS is a Least-Squares (LS)-driven iterative algorithm, that is
usually initialized using the SVD/EVD solution, when applicable,
and/or multiple random “cold starts”.

TALS is based on the matrix view of the CP model:

�
����	� � �������

The basic idea behind TALS is this: Given interim estimates
of �, �, solve for the conditional Least-Squares (LS) update of
�:

���� �
�
�����������	�

��
LS updates of �, � can be easily derived based on symmetry.
Then repeat in a circular fashion until convergence in fit.

Like any alternating optimization algorithm, TALS enjoys mono-
tone convergence of the fit, but not necessarily to the global min-
imum - although, due to the highly structured nature of the CP
model, convergence to the global minimum is often attained (es-
pecially when a few random cold starts are employed).

Cramer-Rao bounds for the CP model have been developed in
[26, 17, 50]. These include:

� The real i.i.d. Gaussian, 3-way, case [26];

� The complex circularly symmetric i.i.d. Gaussian, 3-way &
4-way case [26];

� Asymptotic CRB when one mode length goes to infinity
[17];

� Laplacian and Cauchy cases [50].

It has been shown [26], by extensive simulations, that TALS
generally stays close to the pertinent Cramer-Rao bound, provided
that the problem is sufficiently over-determined (that is, � ��

���). To understand this, note that, with 3-way data it is easy to
get to the large-samples regime: e.g., ��� ��� �� � ����

Performance is worse (and further from the CRB) when op-
erating close to the identifiability boundary; but TALS works un-
der model identifiability conditions only, which means that at high
SNR the parameter estimates are still accurate

The main shortcoming of TALS is its high computational cost,
and occasionally slow convergence. For difficult data sets, so-
called swamps may emerge: progress towards convergence be-
comes extremely slow. A cold re-start is the usual way around
this.

There are many alternative algorithms for CP fitting, e.g., per-
forming rank-1 three-way array updates instead of matrix updates,
using Gauss-Newton iterations, etc. While these alternatives may
indeed work better than TALS in certain cases, the overall percep-
tion in the multi-way community is that TALS is the best jack-
of-all-trades across the spectrum of CP applications considered to
date.

Robust regression algorithms have also been developed for sit-
uations wherein one has to deal with heavy-tailed measurement
noise and outliers. Recent work in this direction [50] has fo-
cused on the Least Absolute Error (LAE) criterion, which is op-
timal (ML) for Laplacian noise, and also robust across �-stable
noise processes. The corresponding robust regression algorithms
are similar to TALS, except that each conditional matrix update
is now equivalent to a Linear Programming (LP) problem. This
gives rise to an alternating LP procedure [50]; alternatively, very
simple element-wise updating using weighted median filtering can
do the job [50], at a much reduced complexity and often negligible
performance loss. These robust versions of TALS also work well
under Gaussian noise.

TALS assumes uncorrelated errors; significant noise color throws
it off track. While it is easy to handle noise color along one mode
only, via whitening, things become much more complicated when
there is 2-way or 3-way noise correlation. In this case, one can use
the vectorized model

�
���	� � ���

�
�

����	�
�
� �������	���

and the principle of Majorization to come up with a suitable ML
fitting algorithm [6]. Majorization can be implemented as a simple
outer loop over TALS, and is thus easy to program.

5. LEARN MORE

In addition to the selected bibliography in the end of this paper, the
following web pointers provide a wealth of information related to
the CP model and multi-way analysis in general. These links in-
clude free on-line multi-way tutorials (including the Tucker class
of models, the other main-stay of multi-way analysis, which un-
fortunately we could not touch upon), software, paper reprints, and
other current information.

Richard Harshman’s homepage (http://publish.uwo.ca/ harsh-
man/) contains many hard-to-find reprints of early seminal pa-



pers. The web-site of Peter Kroonenburg’s 3-Mode Company con-
tains many useful links, and perhaps the most extensive multi-way
bibliography that is available as of this writing. Rasmus Bro’s
page (http://www.models.kvl.dk/users/rasmus/) contains links to
free interactive multi-way tutorials and software, in addition to
a free monograph on multi-way methods. My own page (still
at www.ece.umn.edu/users/nikos/) contains software and several
reprints. The main scientific forum for cross-disciplinary basic re-
search in this area is the TRICAP (Three-Way Analysis in Chem-
istry and Psychology) Workshop, which is held every three years.
It has been held in Faaborg, Denmark in 2000; Lexington, KY,
U.S.A., in 2003; and will be held in Crete - Greece in 2006. Search
for ‘TRICAP’ on the web for more information.

6. WHAT LIES AHEAD

The key take home point is that �� � ��-way arrays are different,
in many ways. Perhaps the most important is that low-rank models
are unique, which has many applications in signal processing, and
beyond.

What are the major challenges for future research in this area?
In my opinion, the major challenge with respect to uniqueness re-
search is to find easy to check necessary and sufficient conditions,
even if these hold almost-surely. Higher-way models are another
challenge. For � � �, the existing sufficient conditions are much
further from necessity than those for � � �. The investigation of
uniqueness under application-specific constraints (e.g., Toeplitz) is
also of interest. Symmetric and super-symmetric CP models have
important applications in joint diagonalization and higher-order
statistics; however, symmetry has been largely left unexplored in
so far as strengthening uniqueness conditions is concerned.

In terms of algorithms, faster fitting methods that only incur
a small performance loss relative to TALS are sorely needed, in
order to bring on-line implementation closer to reality. The in-
corporation of application-specific constraints could help in this
direction.

In the end, the sustained growth of a scientific area rests largely
on finding new motivating applications, which attract talented young
researchers into it. I hope that you will be one of those.
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